BAIT
RPD3
MOF6, REC3, SDI2, SDS6, histone deacetylase RPD3, L000001696, L000001603, YNL330C
Histone deacetylase, component of both the Rpd3S and Rpd3L complexes; regulates transcription, silencing, autophagy and other processes by influencing chromatin remodeling; forms at least two different complexes which have distinct functions and members; Rpd3(L) recruitment to the subtelomeric region is regulated by interaction with the arginine methyltransferase, Hmt1p
GO Process (19)
GO Function (3)
GO Component (6)
Gene Ontology Biological Process
- chromatin organization involved in regulation of transcription [IMP]
- histone H3 deacetylation [IMP]
- histone H4 deacetylation [IMP]
- negative regulation of chromatin silencing at rDNA [IMP]
- negative regulation of chromatin silencing at silent mating-type cassette [IMP]
- negative regulation of chromatin silencing at telomere [IDA, IMP]
- negative regulation of reciprocal meiotic recombination [IMP]
- negative regulation of transcription during meiosis [IMP]
- negative regulation of transcription from RNA polymerase I promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IGI, IMP, IPI]
- positive regulation of macroautophagy [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IGI, IMP]
- protein localization to nucleolar rDNA repeats [IMP]
- regulation of DNA-dependent DNA replication initiation [IGI, IMP]
- regulation of transcription involved in G1/S transition of mitotic cell cycle [IGI, IPI]
- regulation of transcription involved in G2/M transition of mitotic cell cycle [IGI]
- replicative cell aging [IMP]
- transcription elongation from RNA polymerase II promoter [IGI]
- transfer RNA gene-mediated silencing [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
NCL1
TRM4, YBL024W
S-adenosyl-L-methionine-dependent tRNA: m5C-methyltransferase; methylates cytosine to m5C at several positions in tRNAs and intron-containing pre-tRNAs; increases proportion of tRNALeu(CAA) with m5C at wobble position in response to hydrogen peroxide, causing selective translation of mRNA from genes enriched in TTG codon; loss of NCL1 confers hypersensitivity to oxidative stress; similar to Nop2p and human proliferation associated nucleolar protein p120
GO Process (3)
GO Function (2)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
The genetic landscape of a cell.
A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, ... [more]
Science Jan. 22, 2010; 327(5964);425-31 [Pubmed: 20093466]
Quantitative Score
- -0.149 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- A Synthetic Genetic Array (SGA) analysis was carried out to quantitatively score genetic interactions based on fitness defects that were estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an SGA score of epsilon > 0.08 for positive interactions and epsilon < -0.08 for negative interactions, and a p-value < 0.05.
Curated By
- BioGRID