BAIT
FKH2
forkhead family transcription factor FKH2, L000002608, YNL068C
Forkhead family transcription factor; plays a major role in the expression of G2/M phase genes; positively regulates transcriptional elongation; facilitates clustering and activation of early-firing replication origins; negative role in chromatin silencing at HML and HMR; substrate of the Cdc28p/Clb5p kinase; relocalizes to the cytosol in response to hypoxia; FKH2 has a paralog, FKH1, that arose from the whole genome duplication
GO Process (10)
GO Function (8)
GO Component (4)
Gene Ontology Biological Process
- chromatin remodeling [IGI, IMP]
- mitochondrion organization [IBA]
- negative regulation of chromatin silencing at silent mating-type cassette [IGI, IMP]
- negative regulation of pseudohyphal growth [IGI, IMP]
- negative regulation of transcription involved in G1/S transition of mitotic cell cycle [IGI]
- negative regulation of transcription involved in G2/M transition of mitotic cell cycle [IGI]
- positive regulation of DNA-dependent DNA replication initiation [IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IGI, IMP]
- positive regulation of transcription involved in G2/M transition of mitotic cell cycle [IGI, IMP]
- regulation of sequence-specific DNA binding transcription factor activity [IBA]
Gene Ontology Molecular Function- DNA replication origin binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IBA]
- RNA polymerase II transcription factor binding [IDA, IMP]
- RNA polymerase II transcription factor binding transcription factor activity [IDA, IGI, IMP]
- double-stranded DNA binding [IBA]
- sequence-specific DNA binding [IDA]
- transcription factor binding [IBA]
- DNA replication origin binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IBA]
- RNA polymerase II transcription factor binding [IDA, IMP]
- RNA polymerase II transcription factor binding transcription factor activity [IDA, IGI, IMP]
- double-stranded DNA binding [IBA]
- sequence-specific DNA binding [IDA]
- transcription factor binding [IBA]
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
MSB4
L000003919, YOL112W
GTPase-activating protein of the Ras superfamily; acts primarily on Sec4p, localizes to the bud site and bud tip; msb3 msb4 double mutation causes defects in secretion and actin organization; similar to the TBC-domain Tre2 oncogene; MSB4 has a paralog, MSB3, that arose from the whole genome duplication
GO Process (2)
GO Function (1)
GO Component (3)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
The genetic landscape of a cell.
A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, ... [more]
Science Jan. 22, 2010; 327(5964);425-31 [Pubmed: 20093466]
Quantitative Score
- -0.1463 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- A Synthetic Genetic Array (SGA) analysis was carried out to quantitatively score genetic interactions based on fitness defects that were estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an SGA score of epsilon > 0.08 for positive interactions and epsilon < -0.08 for negative interactions, and a p-value < 0.05.
Curated By
- BioGRID