BAIT

MAD2

spindle checkpoint protein MAD2, L000000975, YJL030W
Component of the spindle-assembly checkpoint complex; delays onset of anaphase in cells with defects in mitotic spindle assembly; forms a complex with Mad1p; regulates APC/C activity during prometaphase and metaphase of meiosis I; gene dosage imbalance between MAD1 and MAD2 leads to chromosome instability
GO Process (3)
GO Function (0)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

HCM1

L000000757, YCR065W
Forkhead transcription factor; drives S-phase specific expression of genes involved in chromosome segregation, spindle dynamics, and budding; suppressor of calmodulin mutants with specific SPB assembly defects; telomere maintenance role; regulates replicative lifespan; ortholog of C. elegans lifespan regulator PHA-4
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Uncovering novel cell cycle players through the inactivation of securin in budding yeast.

Sarin S, Ross KE, Boucher L, Green Y, Tyers M, Cohen-Fix O

Budding yeast securin/Pds1p, an inhibitor of the anaphase activator separase/Esp1p, is involved in several checkpoint pathways and in promoting Esp1p's nuclear localization. Using a modified synthetic genetic array (SGA) screen for genes that become essential in the absence of Pds1p, we uncovered roles for uncharacterized genes in cell cycle processes, including Esp1p activation. ... [more]

Genetics Nov. 01, 2004; 168(3);1763-71 [Pubmed: 15579722]

Throughput

  • Low Throughput

Ontology Terms

  • vegetative growth (APO:0000106)
  • mitotic cell cycle (APO:0000072)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MAD2 HCM1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-13.2619BioGRID
213547
MAD2 HCM1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5266BioGRID
391428
HCM1 MAD2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5266BioGRID
361596
MAD2 HCM1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6677BioGRID
2134827
MAD2 HCM1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4523BioGRID
2438087
MAD2 HCM1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
341423
MAD2 HCM1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
167488
MAD2 HCM1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
111060

Curated By

  • BioGRID