BAIT

MRE11

NGS1, RAD58, XRS4, MRX complex nuclease subunit, L000004732, L000001149, L000004275, YMR224C
Nuclease subunit of the MRX complex with Rad50p and Xrs2p; complex functions in repair of DNA double-strand breaks and in telomere stability; Mre11p associates with Ser/Thr-rich ORFs in premeiotic phase; nuclease activity required for MRX function; widely conserved; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

TOP1

MAK1, MAK17, DNA topoisomerase 1, L000002319, YOL006C
Topoisomerase I; nuclear enzyme that relieves torsional strain in DNA by cleaving and re-sealing the phosphodiester backbone; relaxes both positively and negatively supercoiled DNA; functions in replication, transcription, and recombination; role in processing ribonucleoside monophosphates in genomic DNA into irreversible single-strand breaks
Saccharomyces cerevisiae (S288c)

Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Publication

Repair of topoisomerase I covalent complexes in the absence of the tyrosyl-DNA phosphodiesterase Tdp1.

Liu C, Pouliot JJ, Nash HA

Accidental or drug-induced interruption of the breakage and reunion cycle of eukaryotic topoisomerase I (Top1) yields complexes in which the active site tyrosine of the enzyme is covalently linked to the 3' end of broken DNA. The enzyme tyrosyl-DNA phosphodiesterase (Tdp1) hydrolyzes this protein-DNA link and thus functions in the repair of covalent complexes, but genetic studies in yeast show ... [more]

Proc. Natl. Acad. Sci. U.S.A. Nov. 12, 2002; 99(23);14970-5 [Pubmed: 12397185]

Throughput

  • Low Throughput

Ontology Terms

  • resistance to chemicals (APO:0000087)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
TOP1 MRE11
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-4.2983BioGRID
218839
MRE11 TOP1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
3492761
TOP1 MRE11
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
513274
MRE11 TOP1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
575297
TOP1 MRE11
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
111745

Curated By

  • BioGRID