PREY

RPB4

CTF15, DNA-directed RNA polymerase II subunit RPB4, B32, L000001678, YJL140W
RNA polymerase II subunit B32; forms dissociable heterodimer with Rpb7p; Rpb4/7 dissociates from RNAPII as Ser2 CTD phosphorylation increases; Rpb4/7 regulates cellular lifespan via mRNA decay process; involved in recruitment of 3'-end processing factors to transcribing RNAPII complex, export of mRNA to cytoplasm under stress conditions; also involved in translation initiation
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Mediator head module structure and functional interactions.

Cai G, Imasaki T, Yamada K, Cardelli F, Takagi Y, Asturias FJ

We used single-particle electron microscopy to characterize the structure and subunit organization of the Mediator Head module that controls Mediator-RNA polymerase II (RNAPII) and Mediator-promoter interactions. The Head module adopts several conformations differing in the position of a movable jaw formed by the Med18-Med20 subcomplex. We also characterized, by structural, biochemical and genetic means, the interactions of the Head module ... [more]

Nat. Struct. Mol. Biol. Mar. 01, 2010; 17(3);273-9 [Pubmed: 20154708]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPB4 SRB2
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High4.0699BioGRID
225429
SRB2 RPB4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
353839

Curated By

  • BioGRID