TSA1
Gene Ontology Biological Process
Gene Ontology Molecular Function
XRS2
Gene Ontology Biological Process
- base-excision repair [IGI, IMP]
 - double-strand break repair via nonhomologous end joining [IMP]
 - meiotic DNA double-strand break formation [IMP]
 - mitochondrial double-strand break repair via homologous recombination [IMP]
 - sporulation resulting in formation of a cellular spore [IMP]
 - telomere maintenance [IMP]
 
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage.
In this study, we used Saccharomyces cerevisiae to identify a biological network that prevents the deleterious effects of endogenous reactive oxygen species. The absence of Tsa1, a key peroxiredoxin, caused increased rates of mutations, chromosomal rearrangements, and recombination. Defects in recombinational DNA double strand break repair, Rad6-mediated postreplicative repair, and DNA damage and replication checkpoints caused growth defects or lethality ... [more]
Throughput
- Low Throughput
 
Ontology Terms
- inviable (APO:0000112)
 
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes | 
|---|---|---|---|---|---|---|
| TSA1 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -11.6811 | BioGRID | 213803  | |
| XRS2 TSA1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -0.2734 | BioGRID | 370076  | |
| XRS2 TSA1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -0.255 | BioGRID | 2100527  | |
| TSA1 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -0.4404 | BioGRID | 2157666  | |
| XRS2 TSA1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | High | - | BioGRID | 458008  | |
| TSA1 XRS2 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | High | - | BioGRID | 456300  | 
Curated By
- BioGRID