BAIT

RPN11

MPR1, proteasome regulatory particle lid subunit RPN11, L000002976, L000002965, YFR004W
Metalloprotease subunit of 19S regulatory particle; part of 26S proteasome lid; couples the deubiquitination and degradation of proteasome substrates; involved, independent of catalytic activity, in fission of mitochondria and peroxisomes; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

DCP2

PSU1, decapping enzyme complex catalytic subunit DCP1, L000002866, YNL118C
Catalytic subunit of the Dcp1p-Dcp2p decapping enzyme complex; removes the 5' cap structure from mRNAs prior to their degradation; also enters the nucleus and positively regulates transcription initiation; nudix hydrolase family member; forms cytoplasmic foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy.

Kaake RM, Milenkovic T, Przulj N, Kaiser P, Huang L

Ubiquitin-proteasome dependent protein degradation plays a fundamental role in the regulation of the eukaryotic cell cycle. Cell cycle transitions between different phases are tightly regulated to prevent uncontrolled cell proliferation, which is characteristic of cancer cells. To understand cell cycle phase specific regulation of the 26S proteasome and reveal the molecular mechanisms underlying the ubiquitin-proteasome degradation pathway during cell cycle ... [more]

J. Proteome Res. Apr. 05, 2010; 9(4);2016-29 [Pubmed: 20170199]

Throughput

  • High Throughput

Additional Notes

  • Proteasome interacting proteins (PIPs) were identified using QTAX (quantitative analysis of tandem affinity purified in vivo cross-linked (X) protein complexes). TAP-tagged Rpn11 and in vivo formaldehyde cross-linking were used in the experiment.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPN11 DCP2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2836BioGRID
1931700

Curated By

  • BioGRID