BUD27
Gene Ontology Biological Process
Gene Ontology Cellular Component
RPB5
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
PCA
A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.
Publication
Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins.
Interactions between proteins are central to most biological processes; consequently, understanding the latter requires identification of all possible protein interactions within a cell. To extend the range of existing assays for the detection of protein interactions, we present a novel genetic screening assay, the cytosolic yeast two-hybrid system (cytoY2H), which is based on the split-ubiquitin technique and detects protein-protein interactions ... [more]
Throughput
- Low Throughput
Additional Notes
- Split-ubiquitin assay
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RPB5 BUD27 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
BUD27 RPB5 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 2 | BioGRID | 3612391 | |
BUD27 RPB5 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
BUD27 RPB5 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 3407495 | |
BUD27 RPB5 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 1504005 | |
RPB5 BUD27 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5148 | BioGRID | 1961682 | |
BUD27 RPB5 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 1504001 | |
BUD27 RPB5 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 1504000 | |
BUD27 RPB5 | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | High | - | BioGRID | - |
Curated By
- BioGRID