BAIT

RTT106

YNL206C
Histone chaperone; involved in regulation of chromatin structure in both transcribed and silenced chromosomal regions; affects transcriptional elongation; has a role in regulation of Ty1 transposition; interacts physically and functionally with Chromatin Assembly Factor-1 (CAF-1)
Saccharomyces cerevisiae (S288c)
PREY

RPS29B

ribosomal 40S subunit protein S29B, S14, YS29, S36B, S29B, YS29B, L000002550, YDL061C
Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S29 and bacterial S14; RPS29B has a paralog, RPS29A, that arose from the whole genome duplication
GO Process (1)
GO Function (1)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The Rtt106 histone chaperone is functionally linked to transcription elongation and is involved in the regulation of spurious transcription from cryptic promoters in yeast.

Imbeault D, Gamar L, Rufiange A, Paquet E, Nourani A

Rtt106 is a histone chaperone that has been suggested to play a role in heterochromatin-mediated silencing in Saccharomyces cerevisiae. It interacts physically and functionally with the chromatin assembly factor-1 (CAF-1), which is associated with replication-coupled nucleosomal deposition. In this work, we have taken several approaches to study Rtt106 in greater detail and have identified a previously unknown function of Rtt106. ... [more]

J. Biol. Chem. Oct. 10, 2008; 283(41);27350-4 [Pubmed: 18708354]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Curated By

  • BioGRID