BAIT

PAC10

GIM2, PFD3, RKS2, L000002864, YGR078C
Part of the heteromeric co-chaperone GimC/prefoldin complex; complex promotes efficient protein folding
GO Process (1)
GO Function (1)
GO Component (3)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

RBL2

L000002910, YOR265W
Protein involved in microtubule morphogenesis; required for protection from excess free beta-tubulin; proposed to be involved the folding of beta-tubulin; similar to mouse beta-tubulin cofactor A; protein abundance increases in response to DNA replication stress
GO Process (2)
GO Function (2)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

Protection from free beta-tubulin by the beta-tubulin binding protein Rbl2p.

Abruzzi KC, Smith A, Chen W, Solomon F

Free beta-tubulin not in heterodimers with alpha-tubulin can be toxic, disrupting microtubule assembly and function. We are interested in the mechanisms by which cells protect themselves from free beta-tubulin. This study focused specifically on the function of Rbl2p, which, like alpha-tubulin, can rescue cells from free beta-tubulin. In vitro studies of the mammalian homolog of Rbl2p, cofactor A, have suggested ... [more]

Mol. Cell. Biol. Jan. 01, 2002; 22(1);138-47 [Pubmed: 11739729]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: viability (APO:0000111)

Additional Notes

  • in tub3 background

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RBL2 PAC10
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-11.1477BioGRID
213929
PAC10 RBL2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4008BioGRID
2120778
RBL2 PAC10
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4505BioGRID
2186334
RBL2 PAC10
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-16.3833BioGRID
901462
PAC10 RBL2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
156473
PAC10 RBL2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158427
PAC10 RBL2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158092
RBL2 PAC10
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
110641
PAC10 RBL2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
110642

Curated By

  • BioGRID