BAIT

NTG2

SCR2, bifunctional N-glycosylase/AP lyase NTG2, L000004115, YOL043C
DNA N-glycosylase and apurinic/apyrimidinic (AP) lyase; involved in base excision repair, localizes to the nucleus; sumoylated; NTG2 has a paralog, NTG1, that arose from the whole genome duplication
GO Process (2)
GO Function (2)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

REV3

PSO1, L000001616, YPL167C
Catalytic subunit of DNA polymerase zeta; involved in translesion synthesis during post-replication repair; required for mutagenesis induced by DNA damage; involved in double-strand break repair; forms a complex with Rev7p, Pol31p and Pol32p
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Delineating the requirements for spontaneous DNA damage resistance pathways in genome maintenance and viability in Saccharomyces cerevisiae.

Morey NJ, Doetsch PW, Jinks-Robertson S

Cellular metabolic processes constantly generate reactive species that damage DNA. To counteract this relentless assault, cells have developed multiple pathways to resist damage. The base excision repair (BER) and nucleotide excision repair (NER) pathways remove damage whereas the recombination (REC) and postreplication repair (PRR) pathways bypass the damage, allowing deferred removal. Genetic studies in yeast indicate that these pathways can ... [more]

Genetics Jun. 01, 2003; 164(2);443-55 [Pubmed: 12807766]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: uv resistance (APO:0000085)
  • phenotype: resistance to chemicals (APO:0000087)

Additional Notes

  • deletion of REV3 or RAD1 in conjunction with an NTG1/NTG2/APN1 triple mutant results in reduced spore viability due to increased sensitivity to DNA damaging agents

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
REV3 NTG2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1778BioGRID
2192350
REV3 NTG2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
156699
REV3 NTG2
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
344290
NTG2 REV3
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
436842

Curated By

  • BioGRID