BAIT

GYP5

YPL249C
GTPase-activating protein (GAP) for yeast Rab family members; involved in ER to Golgi trafficking; exhibits GAP activity toward Ypt1p that is stimulated by Gyl1p, also acts on Sec4p; interacts with Gyl1p, Rvs161p and Rvs167p; involved in recruiting Rvs167p to the bud tip during polarized growth; relocalizes from bud neck to cytoplasm upon DNA replication stress; GYP5 has a paralog, GYL1, that arose from the whole genome duplication
GO Process (2)
GO Function (1)
GO Component (7)
Saccharomyces cerevisiae (S288c)
PREY

GYL1

APP2, YMR192W
Putative GTPase activating protein (GAP) with a role in exocytosis; stimulates Gyp5p GAP activity on Ypt1p, colocalizes with Gyp5p at sites of polarized growth; interacts with Gyp5p, Rvs161p, and Rvs167p; involved in recruiting Rvs167p to the bud tip during polarized growth; increases in abundance and relocalizes from bud neck to cytoplasm upon DNA replication stress; GYL1 has a paralog, GYP5, that arose from the whole genome duplication
GO Process (2)
GO Function (1)
GO Component (8)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Interaction of the Saccharomyces cerevisiae cortical actin patch protein Rvs167p with proteins involved in ER to Golgi vesicle trafficking.

Friesen H, Colwill K, Robertson K, Schub O, Andrews B

We have used affinity chromatography to identify two proteins that bind to the SH3 domain of the actin cytoskeleton protein Rvs167p: Gyp5p and Gyl1p. Gyp5p has been shown to be a GTPase activating protein (GAP) for Ypt1p, a Rab GTPase involved in ER to Golgi trafficking; Gyl1p is a protein that resembles Gyp5p and has recently been shown to colocalize ... [more]

Genetics Jun. 01, 2005; 170(2);555-68 [Pubmed: 15802519]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • Overexpression of GYP5 and GLY1 is lethal in strains with compromised ER to Golgi trafficking

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GYL1 GYP5
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
GYL1 GYP5
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High9BioGRID
3606734
GYL1 GYP5
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

High-BioGRID
-
GYP5 GYL1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
GYP5 GYL1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
GYL1 GYP5
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
GYL1 GYP5
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
GYP5 GYL1
Co-fractionation
Co-fractionation

Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.

Low-BioGRID
-
GYP5 GYL1
Co-localization
Co-localization

Interaction inferred from two proteins that co-localize in the cell by indirect immunofluorescence only when in addition, if one gene is deleted, the other protein becomes mis-localized. Also includes co-dependent association of proteins with promoter DNA in chromatin immunoprecipitation experiments.

Low-BioGRID
-
GYP5 GYL1
Far Western
Far Western

An interaction is detected between a protein immobilized on a membrane and a purified protein probe.

Low-BioGRID
-
GYL1 GYP5
Far Western
Far Western

An interaction is detected between a protein immobilized on a membrane and a purified protein probe.

Low-BioGRID
-
GYP5 GYL1
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
GYL1 GYP5
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

High-BioGRID
700222
GYP5 GYL1
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

High-BioGRID
701033
GYL1 GYP5
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

High-BioGRID
342162

Curated By

  • BioGRID