PSMA6
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- RNA metabolic process [TAS]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent [TAS]
- antigen processing and presentation of peptide antigen via MHC class I [TAS]
- apoptotic process [TAS]
- cellular nitrogen compound metabolic process [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- mitotic cell cycle [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- protein polyubiquitination [TAS]
- proteolysis involved in cellular protein catabolic process [IMP]
- regulation of apoptotic process [TAS]
- regulation of cellular amino acid metabolic process [TAS]
- regulation of inflammatory response [IC]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- small molecule metabolic process [TAS]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- cytoplasm [IDA]
- cytoplasmic mRNA processing body [ISS]
- cytosol [TAS]
- extracellular vesicular exosome [IDA]
- myofibril [ISS]
- nuclear matrix [ISS]
- nucleoplasm [IDA, TAS]
- nucleus [IDA]
- polysome [IDA]
- proteasome complex [IDA]
- proteasome core complex [ISS, NAS]
- proteasome core complex, alpha-subunit complex [IDA, TAS]
- sarcomere [ISS]
CUL1
Gene Ontology Biological Process
- G1/S transition of mitotic cell cycle [TAS]
- G2/M transition of mitotic cell cycle [TAS]
- Notch signaling pathway [TAS]
- SCF-dependent proteasomal ubiquitin-dependent protein catabolic process [IDA, ISS]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- cell cycle arrest [TAS]
- intrinsic apoptotic signaling pathway [TAS]
- mitotic cell cycle [TAS]
- negative regulation of cell proliferation [TAS]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- protein ubiquitination [IDA]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
Modification of Cul1 regulates its association with proteasomal subunits.
ABSTRACT : BACKGROUND : Ubiquitylation targets proteins for degradation by the 26S proteasome. Some yeast and plant ubiquitin ligases, including the highly conserved SCF (Skp1/Cul1/F-box protein) complex, have been shown to associate with proteasomes. We sought to characterize interactions between SCF complexes and proteasomes in mammalian cells. RESULTS : We found that the binding of SCF complexes to proteasomes is ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CUL1 PSMA6 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 688850 | |
PSMA6 CUL1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
CUL1 PSMA6 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID