BAIT

SUP35

GST1, PNM2, SAL3, SUF12, SUP2, SUP36, translation termination factor GTPase eRF3, eRF3, [PSI(+)], [PSI], L000002200, YDR172W
Translation termination factor eRF3; has a role in mRNA deadenylation and decay; altered protein conformation creates the [PSI(+)] prion that modifies cellular fitness, alters translational fidelity by affecting reading frame selection, and results in a nonsense suppressor phenotype; many stress-response genes are repressed in the presence of [PSI(+)]
GO Process (2)
GO Function (2)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

DBP5

RAT8, ATP-dependent RNA helicase DBP5, L000003292, YOR046C
Cytoplasmic ATP-dependent RNA helicase of the DEAD-box family; involved in mRNA export from the nucleus, remodeling messenger ribonucleoprotein particles (mRNPs), with ATPase activity stimulated by Gle1p, IP6 and Nup159p; involved in translation termination along with Sup45p (eRF1); role in the cellular response to heat stress
Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

The DEAD-box RNA helicase Dbp5 functions in translation termination.

Gross T, Siepmann A, Sturm D, Windgassen M, Scarcelli JJ, Seedorf M, Cole CN, Krebber H

In eukaryotes, termination of messenger RNA (mRNA) translation is mediated by the release factors eRF1 and eRF3. Using Saccharomyces cerevisiae as a model organism, we have identified a member of the DEAD-box protein (DBP) family, the DEAD-box RNA helicase and mRNA export factor Dbp5, as a player in translation termination. Dbp5 interacts genetically with both release factors and the polyadenlyate-binding ... [more]

Science Feb. 02, 2007; 315(5812);646-9 [Pubmed: 17272721]

Throughput

  • Low Throughput

Ontology Terms

  • metabolism and growth (APO:0000094)
  • heat sensitivity (APO:0000147)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DBP5 SUP35
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2972BioGRID
1951895

Curated By

  • BioGRID