BAIT

BIM1

YEB1, microtubule-binding protein BIM1, EB1, L000003272, YER016W
Microtubule plus end-tracking protein; together with Kar9p makes up the cortical microtubule capture site and delays the exit from mitosis when the spindle is oriented abnormally
Saccharomyces cerevisiae (S288c)
PREY

IML3

MCM19, L000004778, YBR107C
Outer kinetochore protein and component of the Ctf19 complex; involved in the establishment of pericentromeric cohesion during mitosis; prevents non-disjunction of sister chromatids during meiosis II; forms a stable complex with Chl4p; required for localization of Sgo1p to pericentric sites during meiosis I; orthologous to human centromere constitutive-associated network (CCAN) subunit CENP-L and fission yeast fta1
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis.

Vizeacoumar FJ, van Dyk N, S Vizeacoumar F, Cheung V, Li J, Sydorskyy Y, Case N, Li Z, Datti A, Nislow C, Raught B, Zhang Z, Frey B, Bloom K, Boone C, Andrews BJ

We describe the application of a novel screening approach that combines automated yeast genetics, synthetic genetic array (SGA) analysis, and a high-content screening (HCS) system to examine mitotic spindle morphogenesis. We measured numerous spindle and cellular morphological parameters in thousands of single mutants and corresponding sensitized double mutants lacking genes known to be involved in spindle function. We focused on ... [more]

J. Cell Biol. Jan. 11, 2010; 188(1);69-81 [Pubmed: 20065090]

Throughput

  • High Throughput|Low Throughput

Ontology Terms

  • phenotype: spindle morphology (APO:0000213)

Additional Notes

  • High Throughput: A synthetic genetic array high-content screening analysis (SGA-HCS) was performed to identify defects in spindle morphogenesis apparent in a double mutant background involving either bni1 or bim1.
  • Low Throughput: Selected double mutants identified using the SGA-HCS analysis were further inspected manually.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
BIM1 IML3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-10.3158BioGRID
214168
BIM1 IML3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7659BioGRID
374440
BIM1 IML3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7235BioGRID
2107019
IML3 BIM1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
195844
BIM1 IML3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
166535
BIM1 IML3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
109057
BIM1 IML3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
450043

Curated By

  • BioGRID