AFT1
Gene Ontology Biological Process
- chromosome segregation [IMP]
- establishment of mitotic sister chromatid cohesion [IMP]
- meiotic chromosome segregation [IMP]
- positive regulation of iron ion transport [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription from RNA polymerase II promoter in response to iron ion starvation [IMP]
Gene Ontology Molecular Function
IMG2
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Functional genomics analysis of the Saccharomyces cerevisiae iron responsive transcription factor Aft1 reveals iron-independent functions.
The Saccharomyces cerevisiae transcription factor Aft1 is activated in iron-deficient cells to induce the expression of iron regulon genes, which coordinate the increase of iron uptake and remodel cellular metabolism to survive low-iron conditions. In addition, Aft1 has been implicated in numerous cellular processes including cell-cycle progression and chromosome stability; however, it is unclear if all cellular effects of Aft1 ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
AFT1 IMG2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1743 | BioGRID | 2115014 |
Curated By
- BioGRID