BAIT

AFT1

RCS1, DNA-binding transcription factor AFT1, L000002660, L000001594, YGL071W
Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

REX4

YOL080C
Putative RNA exonuclease; possibly involved in pre-rRNA processing and ribosome assembly
GO Process (2)
GO Function (1)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Functional genomics analysis of the Saccharomyces cerevisiae iron responsive transcription factor Aft1 reveals iron-independent functions.

Berthelet S, Usher J, Shulist K, Hamza A, Maltez N, Johnston A, Fong Y, Harris LJ, Baetz K

The Saccharomyces cerevisiae transcription factor Aft1 is activated in iron-deficient cells to induce the expression of iron regulon genes, which coordinate the increase of iron uptake and remodel cellular metabolism to survive low-iron conditions. In addition, Aft1 has been implicated in numerous cellular processes including cell-cycle progression and chromosome stability; however, it is unclear if all cellular effects of Aft1 ... [more]

Genetics Jul. 01, 2010; 185(3);1111-28 [Pubmed: 20439772]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Curated By

  • BioGRID