BAIT

PRE4

proteasome core particle subunit beta 7, L000001486, YFR050C
Beta 7 subunit of the 20S proteasome
Saccharomyces cerevisiae (S288c)
PREY

RPT3

YNT1, YTA2, proteasome regulatory particle base subunit RPT3, L000002556, L000002537, YDR394W
ATPase of the 19S regulatory particle of the 26S proteasome; one of ATPases of the regulatory particle; involved in the degradation of ubiquitinated substrates; substrate of N-acetyltransferase B
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

A comprehensive strategy enabling high-resolution functional analysis of the yeast genome.

Breslow DK, Cameron DM, Collins SR, Schuldiner M, Stewart-Ornstein J, Newman HW, Braun S, Madhani HD, Krogan NJ, Weissman JS

Functional genomic studies in Saccharomyces cerevisiae have contributed enormously to our understanding of cellular processes. Their full potential, however, has been hampered by the limited availability of reagents to systematically study essential genes and the inability to quantify the small effects of most gene deletions on growth. Here we describe the construction of a library of hypomorphic alleles of essential ... [more]

Nat. Methods Aug. 01, 2008; 5(8);711-8 [Pubmed: 18622397]

Quantitative Score

  • -0.085 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: competitive fitness (APO:0000110)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPT3 PRE4
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High2BioGRID
3612805
RPT3 PRE4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.085BioGRID
442862

Curated By

  • BioGRID