BAIT

POM33

nucleoporin POM33, YLL023C
Transmembrane nucleoporin; involved in nuclear pore complex (NPC) distribution, assembly or stabilization; highly conserved across species, orthologous to human TMEM33 and paralogous to Per33p; protein abundance increases in response to DNA replication stress
GO Process (2)
GO Function (1)
GO Component (4)
Saccharomyces cerevisiae (S288c)
PREY

NUP133

RAT3, L000002620, YKR082W
Subunit of Nup84p subcomplex of nuclear pore complex (NPC); contributes to nucleocytoplasmic transport, NPC biogenesis; is involved in establishment of a normal nucleocytoplasmic concentration gradient of GTPase Gsp1p; also plays roles in several processes that may require localization of genes or chromosomes at nuclear periphery, including double-strand break repair, transcription and chromatin silencing; relocalizes to cytosol in response to hypoxia; homolog of human NUP133
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Pom33, a novel transmembrane nucleoporin required for proper nuclear pore complex distribution.

Chadrin A, Hess B, San Roman M, Gatti X, Lombard B, Loew D, Barral Y, Palancade B, Doye V

The biogenesis of nuclear pore complexes (NPCs) represents a paradigm for the assembly of high-complexity macromolecular structures. So far, only three integral pore membrane proteins are known to function redundantly in NPC anchoring within the nuclear envelope. Here, we describe the identification and functional characterization of Pom33, a novel transmembrane protein dynamically associated with budding yeast NPCs. Pom33 becomes critical ... [more]

J. Cell Biol. May. 31, 2010; 189(5);795-811 [Pubmed: 20498018]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: heat sensitivity (APO:0000147)
  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • Per33/NUP133/Pom33 triple mutants show synthetic growth defect in response to heat stress
  • genetic complex

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
POM33 NUP133
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2218BioGRID
2148230
NUP133 POM33
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1264BioGRID
2147009
POM33 NUP133
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1018BioGRID
2438646
POM33 NUP133
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2344178

Curated By

  • BioGRID