BAIT

POL32

REV5, DNA polymerase delta subunit POL32, L000004337, S000029416, L000001617, YJR043C
Third subunit of DNA polymerase delta; involved in chromosomal DNA replication; required for error-prone DNA synthesis in the presence of DNA damage and processivity; forms a complex with Rev3p, Rev7p and Pol31p; interacts with Hys2p, PCNA (Pol30p), and Pol1p
Saccharomyces cerevisiae (S288c)
PREY

RAD6

PSO8, UBC2, E2 ubiquitin-conjugating protein RAD6, L000001560, YGL058W
Ubiquitin-conjugating enzyme (E2); involved in postreplication repair as a heterodimer with Rad18p, DSBR and checkpoint control as a heterodimer with Bre1p, ubiquitin-mediated N-end rule protein degradation as a heterodimer with Ubr1p, as well as endoplasmic reticulum-associated protein degradation (ERAD) with Ubr1p in the absence of canonical ER membrane ligases
Saccharomyces cerevisiae (S288c)

Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Publication

The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase.

Karras GI, Jentsch S

Damaged DNA templates provide an obstacle to the replication fork and can cause genome instability. In eukaryotes, tolerance to damaged DNA is mediated largely by the RAD6 pathway involving ubiquitylation of the DNA polymerase processivity factor PCNA. Whereas monoubiquitylation of PCNA mediates error-prone translesion synthesis (TLS), polyubiquitylation triggers an error-free pathway. Both branches of this pathway are believed to occur ... [more]

Cell Apr. 16, 2010; 141(2);255-67 [Pubmed: 20403322]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: cold sensitivity (APO:0000148)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
POL32 RAD6
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
447873
POL32 RAD6
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
454822
RAD6 POL32
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
457394
RAD6 POL32
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
159773

Curated By

  • BioGRID