BAIT

SEC14

PIT1, phosphatidylinositol/phosphatidylcholine transfer protein SEC14, L000001839, YMR079W
Phosphatidylinositol/phosphatidylcholine transfer protein; involved in regulating PtdIns, PtdCho, and ceramide metabolism, products of which regulate intracellular transport and UPR; has a role in localization of lipid raft proteins; functionally homologous to mammalian PITPs; SEC14 has a paralog, YKL091C, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

SFH5

YJL145W
Non-classical phosphatidylinositol transfer protein (PITP); exhibits PI- but not PC-transfer activity; localizes to the peripheral endoplasmic reticulum, cytosol and microsomes; similar to Sec14p; partially relocalizes to the plasma membrane upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Nonclassical PITPs activate PLD via the Stt4p PtdIns-4-kinase and modulate function of late stages of exocytosis in vegetative yeast.

Routt SM, Ryan MM, Tyeryar K, Rizzieri KE, Mousley C, Roumanie O, Brennwald PJ, Bankaitis VA

Phospholipase D (PLD) is a PtdCho-hydrolyzing enzyme that plays central signaling functions in eukaryotic cells. We previously demonstrated that action of a set of four nonclassical and membrane-associated Sec14p-like phosphatidylinositol transfer proteins (PITPs) is required for optimal activation of yeast PLD in vegetative cells. Herein, we focus on mechanisms of Sfh2p and Sfh5p function in this regulatory circuit. We describe ... [more]

Traffic Dec. 01, 2005; 6(12);1157-72 [Pubmed: 16262726]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: budding (APO:0000024)

Additional Notes

  • Overexpression of SFH5 partially suppresses the budding defects seen in a SEC14/CKI1 double mutant
  • genetic complex

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC14 SFH5
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
2901213
SEC14 SFH5
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
161697
SEC14 SFH5
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
2386679
SEC14 SFH5
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
258396

Curated By

  • BioGRID