SET2
Gene Ontology Biological Process
- DNA-templated transcription, elongation [IDA, IPI]
- DNA-templated transcription, termination [IMP]
- ascospore formation [IMP]
- histone deacetylation [IMP]
- histone methylation [IDA, IMP]
- negative regulation of antisense RNA transcription [IMP]
- negative regulation of histone H3-K14 acetylation [IMP]
- negative regulation of histone H3-K9 acetylation [IMP]
- negative regulation of reciprocal meiotic recombination [IMP]
- positive regulation of histone acetylation [IGI]
- regulation of DNA-dependent DNA replication initiation [IMP]
- regulation of histone exchange [IMP]
- regulation of transcription, DNA-templated [IDA, IMP]
Gene Ontology Molecular Function
SWC3
Gene Ontology Biological Process
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Global mapping of the yeast genetic interaction network.
A genetic interaction network containing approximately 1000 genes and approximately 4000 interactions was mapped by crossing mutations in 132 different query genes into a set of approximately 4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SET2 SWC3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.9956 | BioGRID | 216502 | |
SWC3 SET2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1578 | BioGRID | 355141 | |
SET2 SWC3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1578 | BioGRID | 389776 | |
SWC3 SET2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2464 | BioGRID | 2075421 | |
SWC3 SET2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 517174 | |
SET2 SWC3 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 517026 | |
SET2 SWC3 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low/High | - | BioGRID | 82405 |
Curated By
- BioGRID