BAIT

SLX5

HEX3, ULS2, SUMO-targeted ubiquitin ligase complex subunit SLX5, L000000768, YDL013W
Subunit of the Slx5-Slx8 SUMO-targeted ubiquitin ligase (STUbL) complex; stimulated by SUMO-modified substrates; contains a RING domain and two SIM motifs; forms SUMO-dependent nuclear foci, including DNA repair centers; associates with the centromere; null mutants are aneuploid, have a metaphase delay, and spindle defects including: mispositioned spindles, fish hook spindles, and aberrant spindle kinetics; required for maintenance of genome integrity like human ortholog RNF4
Saccharomyces cerevisiae (S288c)
PREY

EAF3

YPR023C
Component of the Rpd3S histone deacetylase complex; Esa1p-associated factor, nonessential component of the NuA4 acetyltransferase complex, homologous to Drosophila dosage compensation protein MSL3; plays a role in regulating Ty1 transposition
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

A DNA integrity network in the yeast Saccharomyces cerevisiae.

Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD

A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians ... [more]

Cell Mar. 10, 2006; 124(5);1069-81 [Pubmed: 16487579]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • confirmed by RSA and tetrad analysis

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
EAF3 SLX5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-8.9716BioGRID
214609
EAF3 SLX5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1903BioGRID
421464
EAF3 SLX5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.225BioGRID
2194392
EAF3 SLX5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1582BioGRID
2441366
SLX5 EAF3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-8.9434BioGRID
311018
EAF3 SLX5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low/High-BioGRID
284350
EAF3 SLX5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
453280

Curated By

  • BioGRID