POL32
Gene Ontology Biological Process
- DNA amplification [IMP]
- DNA replication, removal of RNA primer [IDA]
- RNA-dependent DNA replication [IDA]
- base-excision repair [TAS]
- double-strand break repair via break-induced replication [IMP]
- lagging strand elongation [TAS]
- leading strand elongation [TAS]
- mismatch repair [NAS]
- nucleotide-excision repair [TAS]
- postreplication repair [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RVS161
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
A DNA integrity network in the yeast Saccharomyces cerevisiae.
A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- confirmed by RSA
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
POL32 RVS161 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1396 | BioGRID | 2138674 |
Curated By
- BioGRID