HST3
Gene Ontology Biological Process
Gene Ontology Molecular Function
MRC1
Gene Ontology Biological Process
- DNA repair [IGI, IMP]
- DNA replication [IMP]
- DNA replication checkpoint [IGI, IMP, IPI]
- chromatin silencing at silent mating-type cassette [IGI, IMP]
- chromatin silencing at telomere [IGI, IMP]
- intra-S DNA damage checkpoint [IMP]
- maintenance of DNA repeat elements [IMP]
- mitotic sister chromatid cohesion [IGI, IMP]
- regulation of nuclear cell cycle DNA replication [IMP]
- replication fork protection [IGI, IMP, IPI]
- telomere maintenance [IMP]
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
A DNA integrity network in the yeast Saccharomyces cerevisiae.
A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- confirmed by RSA
- confirmed by RSA and tetrad analysis
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
HST3 MRC1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -12.3494 | BioGRID | 213671 | |
MRC1 HST3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5569 | BioGRID | 360529 | |
HST3 MRC1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5569 | BioGRID | 414119 | |
HST3 MRC1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.7584 | BioGRID | 2181736 | |
MRC1 HST3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.6046 | BioGRID | 2086382 | |
MRC1 HST3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 3492272 | |
HST3 MRC1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 2203396 | |
MRC1 HST3 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 454810 | |
HST3 MRC1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 3017577 | |
MRC1 HST3 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 111682 | |
HST3 MRC1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 111683 |
Curated By
- BioGRID