BAIT
SLX4
YLR135W
Endonuclease involved in processing DNA; acts during recombination and repair; promotes template switching during break-induced replication (BIR), causing non-reciprocal translocations (NRTs); cleaves branched structures in a complex with Slx1p; involved interstrand cross-link repair and in Rad1p/Rad10p-dependent removal of 3'-nonhomologous tails during DSBR via single-strand annealing; relative distribution to nuclear foci increases upon DNA replication stress
GO Process (6)
GO Function (1)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
NUP120
RAT2, L000003138, YKL057C
Subunit of the Nup84p subcomplex of the nuclear pore complex (NPC); contributes to nucleocytoplasmic transport and NPC biogenesis and is involved in establishment of a normal nucleocytoplasmic concentration gradient of the GTPase Gsp1p; also plays roles in several processes that may require localization of genes or chromosomes at the nuclear periphery, including double-strand break repair, transcription and chromatin silencing; homologous to human NUP160
GO Process (13)
GO Function (1)
GO Component (3)
Gene Ontology Biological Process
- double-strand break repair [IGI, IMP]
- mRNA export from nucleus [IMP]
- mRNA export from nucleus in response to heat stress [IMP]
- maintenance of chromatin silencing at telomere [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- nuclear pore distribution [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription, DNA-templated [IDA, IGI]
- posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
- protein export from nucleus [IMP]
- protein import into nucleus [IMP]
- ribosomal large subunit export from nucleus [IMP]
- telomere tethering at nuclear periphery [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
A DNA integrity network in the yeast Saccharomyces cerevisiae.
A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians ... [more]
Cell Mar. 10, 2006; 124(5);1069-81 [Pubmed: 16487579]
Throughput
- High Throughput
Ontology Terms
- vegetative growth (APO:0000106)
Additional Notes
- confirmed by RSA
Curated By
- BioGRID