DPB3
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
PAT1
Gene Ontology Biological Process
- CENP-A containing chromatin organization [IMP]
- chromosome segregation [IMP]
- cytoplasmic mRNA processing body assembly [IGI, IMP]
- deadenylation-dependent decapping of nuclear-transcribed mRNA [IMP, IPI]
- formation of translation preinitiation complex [IMP]
- negative regulation of translational initiation [IDA, IMP]
- regulation of translational initiation [IGI, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
A DNA integrity network in the yeast Saccharomyces cerevisiae.
A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- synthetic lethality shown by RSA, synthetic growth defect shown by tetrad analysis
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
PAT1 DPB3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -6.1218 | BioGRID | 216391 | |
PAT1 DPB3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2539 | BioGRID | 361739 | |
DPB3 PAT1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2539 | BioGRID | 360226 | |
DPB3 PAT1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1454 | BioGRID | 2084399 | |
PAT1 DPB3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2147 | BioGRID | 2087737 |
Curated By
- BioGRID