MRE11
Gene Ontology Biological Process
- DNA double-strand break processing involved in repair via synthesis-dependent strand annealing [IMP]
- DNA repair [IMP]
- ascospore formation [IMP]
- base-excision repair [IMP]
- double-strand break repair via break-induced replication [IGI, IMP]
- double-strand break repair via nonhomologous end joining [IMP]
- meiotic DNA double-strand break formation [TAS]
- meiotic DNA double-strand break processing [TAS]
- mitochondrial double-strand break repair via homologous recombination [IMP]
- reciprocal meiotic recombination [IMP]
- regulation of transcription during meiosis [IMP]
Gene Ontology Molecular Function- 3'-5' exonuclease activity [IDA]
- G-quadruplex DNA binding [IDA]
- adenylate kinase activity [IDA]
- double-stranded telomeric DNA binding [IDA]
- endodeoxyribonuclease activity [IDA]
- endonuclease activity [IDA]
- protein complex scaffold [IGI, IMP]
- single-stranded telomeric DNA binding [IDA]
- telomeric DNA binding [IDA]
- 3'-5' exonuclease activity [IDA]
- G-quadruplex DNA binding [IDA]
- adenylate kinase activity [IDA]
- double-stranded telomeric DNA binding [IDA]
- endodeoxyribonuclease activity [IDA]
- endonuclease activity [IDA]
- protein complex scaffold [IGI, IMP]
- single-stranded telomeric DNA binding [IDA]
- telomeric DNA binding [IDA]
Gene Ontology Cellular Component
XRN1
Gene Ontology Biological Process
- nonfunctional rRNA decay [IMP]
- nuclear-transcribed mRNA catabolic process [IMP]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IMP]
- positive regulation of transcription initiation from RNA polymerase II promoter [IMP]
- traversing start control point of mitotic cell cycle [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
A DNA integrity network in the yeast Saccharomyces cerevisiae.
A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- confirmed by tetrad analysis
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
XRN1 MRE11 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -4.23 | BioGRID | 2356049 |
Curated By
- BioGRID