RAD6
Gene Ontology Biological Process
- DNA-templated transcription, termination [IMP]
- ER-associated ubiquitin-dependent protein catabolic process [IGI]
- chromatin silencing at telomere [IMP]
- double-strand break repair via homologous recombination [IGI]
- error-free postreplication DNA repair [IGI]
- error-free translesion synthesis [IGI]
- error-prone translesion synthesis [IGI]
- histone monoubiquitination [IMP]
- meiotic DNA double-strand break formation [IMP]
- mitotic G1 DNA damage checkpoint [IMP]
- protein monoubiquitination [IMP]
- protein polyubiquitination [IMP]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IMP]
- regulation of dipeptide transport [IMP]
- telomere maintenance via recombination [IGI]
- transcription from RNA polymerase II promoter [IPI]
- ubiquitin-dependent protein catabolic process via the N-end rule pathway [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SAP30
Gene Ontology Biological Process
- negative regulation of chromatin silencing at rDNA [IMP]
- negative regulation of chromatin silencing at silent mating-type cassette [IMP]
- negative regulation of chromatin silencing at telomere [IMP]
- negative regulation of transcription from RNA polymerase I promoter [IMP]
- positive regulation of invasive growth in response to glucose limitation [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter in response to heat stress [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
A DNA integrity network in the yeast Saccharomyces cerevisiae.
A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- confirmed by tetrad analysis
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAD6 SAP30 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.226 | BioGRID | 380711 | |
RAD6 SAP30 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2242 | BioGRID | 2114894 | |
SAP30 RAD6 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low/High | - | BioGRID | 285488 |
Curated By
- BioGRID