BAIT
RAD50
MRX complex DNA-binding subunit, L000001570, YNL250W
Subunit of MRX complex with Mre11p and Xrs2p; complex is involved in processing double-strand DNA breaks in vegetative cells, initiation of meiotic DSBs, telomere maintenance, and nonhomologous end joining; forms nuclear foci upon DNA replication stress
GO Process (10)
GO Function (7)
GO Component (3)
Gene Ontology Biological Process
- base-excision repair [IMP]
- double-strand break repair via break-induced replication [TAS]
- double-strand break repair via nonhomologous end joining [IMP]
- meiotic DNA double-strand break formation [TAS]
- meiotic DNA double-strand break processing [TAS]
- meiotic nuclear division [IMP]
- mitochondrial double-strand break repair via homologous recombination [IMP]
- negative regulation of endodeoxyribonuclease activity [IDA]
- telomere maintenance [IMP]
- telomere maintenance via recombination [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
RNR4
CRT3, PSO3, ribonucleotide-diphosphate reductase subunit RNR4, L000002819, S000029396, L000004184, YGR180C
Ribonucleotide-diphosphate reductase (RNR) small subunit; the RNR complex catalyzes the rate-limiting step in dNTP synthesis and is regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits; relocalizes from nucleus to cytoplasm upon DNA replication stress; RNR4 has a paralog, RNR2, that arose from the whole genome duplication
GO Process (2)
GO Function (1)
GO Component (3)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
A DNA integrity network in the yeast Saccharomyces cerevisiae.
A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians ... [more]
Cell Mar. 10, 2006; 124(5);1069-81 [Pubmed: 16487579]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- confirmed by tetrad analysis
Curated By
- BioGRID