BAIT

GET3

ARR4, guanine nucleotide exchange factor GET3, YDL100C
Guanine nucleotide exchange factor for Gpa1p; amplifies G protein signaling; functions as a chaperone under ATP-depleted oxidative stress conditions; subunit of the GET complex, which is involved in ATP dependent Golgi to ER trafficking and insertion of tail-anchored (TA) proteins into the ER membrane under non-stress conditions; has low-level ATPase activity; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

GET2

HUR2, RMD7, YER083C
Subunit of the GET complex; involved in insertion of proteins into the ER membrane; required for the retrieval of HDEL proteins from the Golgi to the ER in an ERD2 dependent fashion and for meiotic nuclear division
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum.

Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, Weibezahn J, Schwappach B, Walter P, Weissman JS, Schuldiner M

Protein folding in the endoplasmic reticulum is a complex process whose malfunction is implicated in disease and aging. By using the cell's endogenous sensor (the unfolded protein response), we identified several hundred yeast genes with roles in endoplasmic reticulum folding and systematically characterized their functional interdependencies by measuring unfolded protein response levels in double mutants. This strategy revealed multiple conserved ... [more]

Science Mar. 27, 2009; 323(5922);1693-7 [Pubmed: 19325107]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GET3 GET2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
GET3 GET2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
GET3 GET2
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
GET3 GET2
Co-crystal Structure
Co-crystal Structure

Interaction directly demonstrated at the atomic level by X-ray crystallography. Also used for NMR or Electron Microscopy (EM) structures. If there is no obvious bait-hit directionality to the interaction involving 3 or more proteins, then the co-crystallized proteins should be listed as a complex.

Low-BioGRID
-
GET2 GET3
Co-crystal Structure
Co-crystal Structure

Interaction directly demonstrated at the atomic level by X-ray crystallography. Also used for NMR or Electron Microscopy (EM) structures. If there is no obvious bait-hit directionality to the interaction involving 3 or more proteins, then the co-crystallized proteins should be listed as a complex.

Low-BioGRID
-
GET3 GET2
Co-crystal Structure
Co-crystal Structure

Interaction directly demonstrated at the atomic level by X-ray crystallography. Also used for NMR or Electron Microscopy (EM) structures. If there is no obvious bait-hit directionality to the interaction involving 3 or more proteins, then the co-crystallized proteins should be listed as a complex.

Low-BioGRID
-
GET2 GET3
Co-fractionation
Co-fractionation

Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.

Low-BioGRID
-
GET3 GET2
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

High-BioGRID
459716
GET2 GET3
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

High-BioGRID
459741
GET3 GET2
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High0.3124BioGRID
364138
GET2 GET3
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High0.3124BioGRID
375259
GET2 GET3
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High0.3208BioGRID
1905474
GET3 GET2
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High0.1897BioGRID
1902770
GET2 GET3
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High5.6461BioGRID
210809
GET3 GET2
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High5.6461BioGRID
206841
GET2 GET3
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High5.5651BioGRID
900049
GET3 GET2
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
GET2 GET3
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
GET3 GET2
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
205502

Curated By

  • BioGRID