NFKBIA
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- T cell receptor signaling pathway [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- apoptotic process [TAS]
- cellular response to cold [NAS]
- cytoplasmic sequestering of NF-kappaB [IMP]
- cytoplasmic sequestering of transcription factor [IDA]
- innate immune response [TAS]
- negative regulation of DNA binding [NAS]
- negative regulation of NF-kappaB transcription factor activity [IDA]
- negative regulation of apoptotic process [TAS]
- negative regulation of lipid storage [IMP]
- negative regulation of macrophage derived foam cell differentiation [IMP]
- neurotrophin TRK receptor signaling pathway [TAS]
- positive regulation of NF-kappaB transcription factor activity [TAS]
- positive regulation of cellular protein metabolic process [IMP]
- positive regulation of cholesterol efflux [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of type I interferon production [TAS]
- regulation of NF-kappaB import into nucleus [NAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
PSMA2
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- RNA metabolic process [TAS]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I [TAS]
- antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent [TAS]
- antigen processing and presentation of peptide antigen via MHC class I [TAS]
- apoptotic process [TAS]
- cellular nitrogen compound metabolic process [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- mitotic cell cycle [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- protein polyubiquitination [TAS]
- regulation of apoptotic process [TAS]
- regulation of cellular amino acid metabolic process [TAS]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
- response to virus [IEP]
- small molecule metabolic process [TAS]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
Mechanism of direct degradation of IkappaBalpha by 20S proteasome.
IkappaBalpha regulates activation of the transcription factor NF-kappaB. NF-kappaB is activated in response to several stimuli, i.e. proinflamatory cytokines, infections, and physical stress. This signal dependent pathway involves IkappaBalpha phosphorylation, ubiquitylation, and degradation by 26S proteasome. A signal independent (basal) turnover of IkappaBalpha has also been described. Here, we show that IkappaBalpha can be directly degraded by 20S proteasomes. Deletion ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID