AR
Gene Ontology Biological Process
- androgen receptor signaling pathway [IDA]
- cell growth [NAS]
- cell proliferation [NAS]
- cell-cell signaling [TAS]
- gene expression [TAS]
- intracellular receptor signaling pathway [IDA]
- negative regulation of extrinsic apoptotic signaling pathway [IDA]
- negative regulation of integrin biosynthetic process [IDA]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of cell proliferation [IDA]
- positive regulation of integrin biosynthetic process [IDA]
- positive regulation of phosphorylation [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription from RNA polymerase III promoter [IDA]
- positive regulation of transcription, DNA-templated [IDA]
- prostate gland development [NAS]
- protein oligomerization [IDA]
- regulation of establishment of protein localization to plasma membrane [IDA]
- sex differentiation [NAS]
- signal transduction [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [IDA]
- transport [TAS]
Gene Ontology Molecular Function- DNA binding [NAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II transcription factor binding [IPI]
- androgen binding [NAS]
- androgen receptor activity [IDA, IMP, NAS, TAS]
- beta-catenin binding [IDA, IPI, TAS]
- chromatin binding [IDA]
- enzyme binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [NAS]
- receptor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [NAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II transcription factor binding [IPI]
- androgen binding [NAS]
- androgen receptor activity [IDA, IMP, NAS, TAS]
- beta-catenin binding [IDA, IPI, TAS]
- chromatin binding [IDA]
- enzyme binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [NAS]
- receptor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
Gene Ontology Cellular Component
SMARCA2
Gene Ontology Biological Process
- ATP catabolic process [TAS]
- chromatin remodeling [TAS]
- negative regulation of cell growth [IMP]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- negative regulation of transcription, DNA-templated [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, TAS]
- positive regulation of transcription, DNA-templated [IDA, IMP]
- regulation of transcription from RNA polymerase II promoter [TAS]
- regulation of transcription, DNA-templated [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Two-hybrid
Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.
Publication
Functional screening of FxxLF-like peptide motifs identifies SMARCD1/BAF60a as an androgen receptor cofactor that modulates TMPRSS2 expression.
Androgen receptor (AR) transcriptional activity is tightly regulated by interacting cofactors and cofactor complexes. The best described cofactor interaction site in the AR is the hormone-induced coactivator binding groove in the ligand-binding domain, which serves as a high-affinity docking site for FxxLF-like motifs. This study aimed at identifying novel AR cofactors by in silico selection and functional screening of FxxLF-like ... [more]
Throughput
- Low Throughput
Additional Notes
- mammalian one-hybrid experimentmdn1
- nalp10
- smarca
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| AR SMARCA2 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3471671 | |
| AR SMARCA2 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
| AR SMARCA2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| AR SMARCA2 | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | Low | - | BioGRID | 2327454 | |
| AR SMARCA2 | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | 1 | BioGRID | 3324259 |
Curated By
- BioGRID