SENP1
Gene Ontology Biological Process
- activation of cysteine-type endopeptidase activity involved in apoptotic process [IMP]
- apoptotic signaling pathway [IMP]
- cellular protein metabolic process [TAS]
- positive regulation of transcription from RNA polymerase II promoter [IGI]
- post-translational protein modification [TAS]
- protein desumoylation [IMP]
- protein sumoylation [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
PARP1
Gene Ontology Biological Process
- DNA repair [TAS]
- cellular response to insulin stimulus [IDA]
- double-strand break repair [IMP]
- gene expression [TAS]
- macrophage differentiation [TAS]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- protein ADP-ribosylation [IDA]
- protein poly-ADP-ribosylation [IDA]
- transcription from RNA polymerase II promoter [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Biochemical Activity
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function.
Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated nuclear protein and functions as a molecular stress sensor. At the cellular level, PARP1 has been implicated in a wide range of processes, such as maintenance of genome stability, cell death, and transcription. PARP1 functions as a transcriptional coactivator of nuclear factor kappaB (NF-kappaB) and hypoxia inducible factor 1 (HIF1). In proteomic studies, ... [more]
Throughput
- Low Throughput
Additional Notes
- desumoylation
Curated By
- BioGRID