BAIT

SAC1

RSD1, phosphatidylinositol-3-phosphatase SAC1, L000001790, YKL212W
Phosphatidylinositol phosphate (PtdInsP) phosphatase; involved in hydrolysis of PtdIns[4]P in the early and medial Golgi; regulated by interaction with Vps74p; ER localized transmembrane protein which cycles through the Golgi; involved in protein trafficking and processing, secretion, and cell wall maintenance; regulates sphingolipid biosynthesis through the modulation of PtdIns(4)P metabolism
Saccharomyces cerevisiae (S288c)
PREY

IPT1

KTI6, MIC2, SYR4, inositolphosphotransferase, L000004226, L000003534, S000029294, YDR072C
Inositolphosphotransferase; involved in synthesis of mannose-(inositol-P)2-ceramide (M(IP)2C), the most abundant sphingolipid; can mutate to resistance to the antifungals syringomycin E and DmAMP1 and to K. lactis zymocin
GO Process (2)
GO Function (1)
GO Component (1)
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

Requirement of a specific group of sphingolipid-metabolizing enzyme for growth of yeast Saccharomyces cerevisiae under impaired metabolism of glycerophospholipids.

Tani M, Kuge O

Sphingolipids play critical roles in many physiologically important events in yeast Saccharomyces cerevisiae. In this study, we screened for yeast mutants showing high sensitivity to Aureobasidin A, an inhibitor of inositol phosphorylceramide synthase, and found that a lack of SAC1 encoding phosphoinositides phosphatase causes high sensitivity to the inhibitor. Double mutation analysis involving the SAC1 and non-essential sphingolipid-metabolizing enzyme genes ... [more]

Mol. Microbiol. Oct. 01, 2010; 78(2);395-413 [Pubmed: 20979339]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: protein transport (APO:0000129)

Additional Notes

  • The SAC1 gene was under the control of the Tet promoter (tet-SAC1).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SAC1 IPT1
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
468314
IPT1 SAC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-5.9193BioGRID
515493
IPT1 SAC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3119BioGRID
365907
IPT1 SAC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1822BioGRID
2094102
IPT1 SAC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-9.7356BioGRID
324462
SAC1 IPT1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-9.4056BioGRID
579825
SAC1 IPT1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
468310

Curated By

  • BioGRID