MYOD1
Gene Ontology Biological Process
- cellular response to estradiol stimulus [ISS]
- histone H3 acetylation [ISS]
- histone H4 acetylation [ISS]
- muscle cell differentiation [TAS]
- muscle cell fate commitment [ISS]
- muscle organ development [TAS]
- myotube cell development [IDA]
- positive regulation of muscle cell differentiation [IDA, TAS]
- positive regulation of myoblast fusion [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, ISS]
- protein phosphorylation [TAS]
- regulation of RNA splicing [IDA]
- regulation of transcription from RNA polymerase II promoter [TAS]
- skeletal muscle tissue development [TAS]
- transcription from RNA polymerase II promoter [TAS]
Gene Ontology Molecular Function- E-box binding [ISS]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [TAS]
- RNA polymerase II regulatory region sequence-specific DNA binding [IDA]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- chromatin DNA binding [ISS]
- core promoter binding [ISS]
- nuclear hormone receptor binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [ISS]
- transcription coactivator activity [TAS]
- E-box binding [ISS]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [TAS]
- RNA polymerase II regulatory region sequence-specific DNA binding [IDA]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- chromatin DNA binding [ISS]
- core promoter binding [ISS]
- nuclear hormone receptor binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [ISS]
- transcription coactivator activity [TAS]
Gene Ontology Cellular Component
DDX5
Gene Ontology Biological Process
- cell growth [NAS]
- intrinsic apoptotic signaling pathway by p53 class mediator [IMP]
- mRNA splicing, via spliceosome [IC]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of DNA damage response, signal transduction by p53 class mediator [IMP]
- positive regulation of intracellular estrogen receptor signaling pathway [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- regulation of alternative mRNA splicing, via spliceosome [IDA]
- regulation of androgen receptor signaling pathway [IMP]
- regulation of osteoblast differentiation [ISS]
- regulation of skeletal muscle cell differentiation [ISS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation.
MyoD regulates skeletal myogenesis. Since proteins associated with MyoD exert regulatory functions, their identification is expected to contribute important insights into the mechanisms governing gene expression in skeletal muscle. We have found that the RNA helicases p68/p72 are MyoD-associated proteins and that the noncoding RNA SRA also immunoprecipitates with MyoD. In vitro and in vivo experiments indicated that both p68/p72 ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID