PARK7
Gene Ontology Biological Process
- Ras protein signal transduction [TAS]
- activation of protein kinase B activity [IC]
- cellular response to glyoxal [IDA]
- cellular response to hydrogen peroxide [IDA]
- cellular response to oxidative stress [IDA, IMP]
- glycolate biosynthetic process [IDA]
- glyoxal catabolic process [IDA]
- hydrogen peroxide metabolic process [IDA]
- lactate biosynthetic process [IDA]
- methylglyoxal catabolic process to D-lactate [IDA]
- mitochondrion organization [ISS]
- negative regulation of TRAIL-activated apoptotic signaling pathway [IMP]
- negative regulation of apoptotic process [IDA]
- negative regulation of cell death [IDA]
- negative regulation of cysteine-type endopeptidase activity involved in apoptotic signaling pathway [IMP]
- negative regulation of death-inducing signaling complex assembly [IC]
- negative regulation of extrinsic apoptotic signaling pathway [IMP]
- negative regulation of gene expression [IDA]
- negative regulation of hydrogen peroxide-induced cell death [IMP]
- negative regulation of hydrogen peroxide-induced neuron death [IDA]
- negative regulation of neuron apoptotic process [IDA]
- negative regulation of neuron death [IDA]
- negative regulation of oxidative stress-induced cell death [IDA]
- negative regulation of oxidative stress-induced neuron intrinsic apoptotic signaling pathway [IDA]
- negative regulation of proteasomal ubiquitin-dependent protein catabolic process [IDA]
- negative regulation of protein K48-linked deubiquitination [IDA]
- negative regulation of protein acetylation [IDA]
- negative regulation of protein binding [IDA, IGI, IMP]
- negative regulation of protein export from nucleus [IGI]
- negative regulation of protein kinase activity [IGI]
- negative regulation of protein phosphorylation [IGI]
- negative regulation of protein sumoylation [IDA]
- negative regulation of protein ubiquitination [IDA]
- negative regulation of ubiquitin-protein transferase activity [IDA]
- negative regulation of ubiquitin-specific protease activity [IDA]
- positive regulation of L-dopa biosynthetic process [IMP]
- positive regulation of L-dopa decarboxylase activity [IDA]
- positive regulation of androgen receptor activity [IMP]
- positive regulation of dopamine biosynthetic process [IC, IDA]
- positive regulation of gene expression [TAS]
- positive regulation of interleukin-8 production [IDA]
- positive regulation of mitochondrial electron transport, NADH to ubiquinone [IMP]
- positive regulation of peptidyl-serine phosphorylation [IMP]
- positive regulation of protein homodimerization activity [IDA]
- positive regulation of protein kinase B signaling [IC]
- positive regulation of protein localization to nucleus [IDA, IMP]
- positive regulation of pyrroline-5-carboxylate reductase activity [IDA]
- positive regulation of sequence-specific DNA binding transcription factor activity [IMP, TAS]
- positive regulation of superoxide dismutase activity [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IGI, IMP]
- positive regulation of transcription regulatory region DNA binding [IMP]
- positive regulation of tyrosine 3-monooxygenase activity [IDA]
- protein stabilization [IDA, IMP]
- regulation of TRAIL receptor biosynthetic process [IMP]
- regulation of androgen receptor signaling pathway [IDA]
- regulation of fibril organization [TAS]
- regulation of inflammatory response [ISS]
- regulation of mitochondrial membrane potential [IMP]
- regulation of neuron apoptotic process [IDA]
Gene Ontology Molecular Function- L-dopa decarboxylase activator activity [IDA]
- androgen receptor binding [IPI]
- core promoter binding [IC]
- cupric ion binding [IDA]
- cuprous ion binding [IDA]
- cytokine binding [IPI]
- double-stranded DNA binding [IDA]
- enzyme binding [IPI]
- glyoxalase (glycolic acid-forming) activity [IDA]
- glyoxalase III activity [IDA]
- identical protein binding [IPI]
- mRNA binding [IDA]
- oxidoreductase activity, acting on peroxide as acceptor [IDA]
- peptidase activity [IDA]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- receptor binding [IPI]
- repressing transcription factor binding [IPI]
- scaffold protein binding [IPI]
- single-stranded DNA binding [IDA]
- small protein activating enzyme binding [IPI]
- small protein conjugating enzyme binding [IPI]
- superoxide dismutase copper chaperone activity [IDA]
- transcription coactivator activity [IGI, TAS]
- transcription factor binding [IPI]
- tyrosine 3-monooxygenase activator activity [IDA]
- ubiquitin-specific protease binding [IPI]
- L-dopa decarboxylase activator activity [IDA]
- androgen receptor binding [IPI]
- core promoter binding [IC]
- cupric ion binding [IDA]
- cuprous ion binding [IDA]
- cytokine binding [IPI]
- double-stranded DNA binding [IDA]
- enzyme binding [IPI]
- glyoxalase (glycolic acid-forming) activity [IDA]
- glyoxalase III activity [IDA]
- identical protein binding [IPI]
- mRNA binding [IDA]
- oxidoreductase activity, acting on peroxide as acceptor [IDA]
- peptidase activity [IDA]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- receptor binding [IPI]
- repressing transcription factor binding [IPI]
- scaffold protein binding [IPI]
- single-stranded DNA binding [IDA]
- small protein activating enzyme binding [IPI]
- small protein conjugating enzyme binding [IPI]
- superoxide dismutase copper chaperone activity [IDA]
- transcription coactivator activity [IGI, TAS]
- transcription factor binding [IPI]
- tyrosine 3-monooxygenase activator activity [IDA]
- ubiquitin-specific protease binding [IPI]
STUB1
Gene Ontology Biological Process
- cellular response to misfolded protein [IDA]
- misfolded or incompletely synthesized protein catabolic process [IDA]
- negative regulation of transforming growth factor beta receptor signaling pathway [TAS]
- positive regulation of chaperone-mediated protein complex assembly [IDA]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process [IDA]
- positive regulation of protein ubiquitination [IDA]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IDA]
- protein K63-linked ubiquitination [IDA]
- protein autoubiquitination [IDA]
- protein maturation [TAS]
- protein polyubiquitination [IDA, IMP]
- regulation of glucocorticoid metabolic process [IDA]
- transforming growth factor beta receptor signaling pathway [TAS]
- ubiquitin-dependent SMAD protein catabolic process [IDA]
- ubiquitin-dependent protein catabolic process [IMP]
Gene Ontology Molecular Function- G-protein coupled receptor binding [IPI]
- Hsp70 protein binding [IDA]
- Hsp90 protein binding [IDA]
- SMAD binding [IDA]
- TPR domain binding [IDA]
- enzyme binding [IPI]
- kinase binding [IPI]
- misfolded protein binding [IDA]
- protein binding [IPI]
- protein binding, bridging [TAS]
- protein homodimerization activity [ISS]
- ubiquitin protein ligase activity [IDA]
- ubiquitin protein ligase binding [IPI]
- ubiquitin-protein transferase activity [IDA, IMP, TAS]
- ubiquitin-ubiquitin ligase activity [ISS]
- G-protein coupled receptor binding [IPI]
- Hsp70 protein binding [IDA]
- Hsp90 protein binding [IDA]
- SMAD binding [IDA]
- TPR domain binding [IDA]
- enzyme binding [IPI]
- kinase binding [IPI]
- misfolded protein binding [IDA]
- protein binding [IPI]
- protein binding, bridging [TAS]
- protein homodimerization activity [ISS]
- ubiquitin protein ligase activity [IDA]
- ubiquitin protein ligase binding [IPI]
- ubiquitin-protein transferase activity [IDA, IMP, TAS]
- ubiquitin-ubiquitin ligase activity [ISS]
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress.
The identification of rare monogenic forms of Parkinson's disease (PD) has provided tremendous insight into the molecular pathogenesis of this disorder. Heritable mutations in alpha-synuclein, parkin, DJ-1 and PINK1 cause familial forms of PD. In the more common sporadic form of PD, oxidative stress and derangements in mitochondrial complex-I function are considered to play a prominent role in disease pathogenesis. ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID