BAIT

SPO7

Nem1-Spo7 phosphatase regulatory subunit SPO7, L000002000, YAL009W
Putative regulatory subunit of Nem1p-Spo7p phosphatase holoenzyme; regulates nuclear growth by controlling phospholipid biosynthesis, required for normal nuclear envelope morphology, premeiotic replication, and sporulation
GO Process (2)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

VPS35

GRD9, VPT7, L000002477, YJL154C
Endosomal subunit of membrane-associated retromer complex; required for retrograde transport; receptor that recognizes retrieval signals on cargo proteins, forms subcomplex with Vps26p and Vps29p that selects cargo proteins for retrieval; interacts with Ypt7p
GO Process (2)
GO Function (1)
GO Component (4)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Vesicle trafficking maintains nuclear shape in Saccharomyces cerevisiae during membrane proliferation.

Webster MT, McCaffery JM, Cohen-Fix O

The parameters that control nuclear size and shape are poorly understood. In yeast, unregulated membrane proliferation, caused by deletion of the phospholipid biosynthesis inhibitor SPO7, leads to a single nuclear envelope "flare" that protrudes into the cytoplasm. This flare is always associated with the asymmetrically localized nucleolus, which suggests that the site of membrane expansion is spatially confined by an ... [more]

J. Cell Biol. Dec. 13, 2010; 191(6);1079-88 [Pubmed: 21135138]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Curated By

  • BioGRID