BAIT

ELP4

HAP1, KTI9, TOT7, Elongator subunit ELP4, YPL101W
Subunit of hexameric RecA-like ATPase Elp456 Elongator subcomplex; which is required for modification of wobble nucleosides in tRNA; required for Elongator structural integrity
GO Process (2)
GO Function (2)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

SIN3

CPE1, GAM2, RPD1, SDI1, SDS16, UME4, transcriptional regulator SIN3, L000001695, YOL004W
Component of both the Rpd3S and Rpd3L histone deacetylase complexes; involved in transcriptional repression and activation of diverse processes, including mating-type switching and meiosis; involved in the maintenance of chromosomal integrity
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator.

Kong SE, Kobor MS, Krogan NJ, Somesh BP, Sogaard TM, Greenblatt JF, Svejstrup JQ

Fcp1 de-phosphorylates the RNA polymerase II (RNAPII) C-terminal domain (CTD) in vitro, and mutation of the yeast FCP1 gene results in global transcription defects and increased CTD phosphorylation levels in vivo. Here we show that the Fcp1 protein associates with elongating RNAPII holoenzyme in vitro. Our data suggest that the association of Fcp1 with elongating polymerase results in CTD de-phosphorylation ... [more]

J. Biol. Chem. Feb. 11, 2005; 280(6);4299-306 [Pubmed: 15563457]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: colony size (APO:0000063)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SIN3 ELP4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1433BioGRID
413888
ELP4 SIN3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1433BioGRID
420300
SIN3 ELP4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1487BioGRID
2178101
ELP4 SIN3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1294BioGRID
2191056

Curated By

  • BioGRID