FRT1
Gene Ontology Biological Process
Gene Ontology Cellular Component
FRT2
Gene Ontology Biological Process
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Hph1 and hph2 are novel components of the sec63/sec62 posttranslational translocation complex that aid in vacuolar proton ATPase biogenesis.
Hph1 and Hph2 are homologous integral endoplasmic reticulum (ER) membrane proteins required for Saccharomyces cerevisiae survival under environmental stress conditions. To investigate the molecular functions of Hph1 and Hph2, we carried out a split-ubiquitin-membrane-based yeast two-hybrid screen and identified their interactions with Sec71, a subunit of the Sec63/Sec62 complex, which mediates posttranslational translocation of proteins into the ER. Hph1 and ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
FRT1 FRT2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
FRT1 FRT2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 162860 |
Curated By
- BioGRID