BAIT

HTZ1

HTA3, histone H2AZ, H2AZ, H2A.F/Z, L000003930, L000004094, YOL012C
Histone variant H2AZ; exchanged for histone H2A in nucleosomes by the SWR1 complex; involved in transcriptional regulation through prevention of the spread of silent heterochromatin; Htz1p-containing nucleosomes facilitate RNA Pol II passage by affecting correct assembly and modification status of RNA Pol II elongation complexes and by favoring efficient nucleosome remodeling
Saccharomyces cerevisiae (S288c)
PREY

SPT8

SAGA complex subunit SPT8, L000002034, YLR055C
Subunit of the SAGA transcriptional regulatory complex; not present in SAGA-like complex SLIK/SALSA; required for SAGA-mediated inhibition at some promoters
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Genetic Analysis Implicates the Set3/Hos2 Histone Deacetylase in the Deposition and Remodeling of Nucleosomes Containing H2A.Z.

Hang M, Smith MM

Histone variants and histone modification complexes act to regulate the functions of chromatin. In Saccharomyces cerevisiae the histone variant H2A.Z is encoded by HTZ1. Htz1 is dispensable for viability in budding yeast, but htz1Δ is synthetic sick or lethal with the null alleles of about 200 non-essential genes. One of the strongest of these interactions is with the deletion of ... [more]

Unknown Feb. 04, 2011; 0(0); [Pubmed: 21288874]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • Enhancement of the synthetic slow growth phenotype of the htz1 set3 double mutant. (Data not shown.)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
HTZ1 SPT8
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-9.3547BioGRID
214470
HTZ1 SPT8
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-8.5672BioGRID
584891
HTZ1 SPT8
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-10.1905BioGRID
507968
HTZ1 SPT8
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
517496
SPT8 HTZ1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
167650
SPT8 HTZ1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low/High-BioGRID
285626
HTZ1 SPT8
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
256881

Curated By

  • BioGRID