DCP1
Gene Ontology Biological Process
Gene Ontology Molecular Function
DIS3
Gene Ontology Biological Process
- exonucleolytic trimming to generate mature 3'-end of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) [IMP]
- ncRNA 3'-end processing [IMP]
- nonfunctional rRNA decay [IMP]
- nuclear mRNA surveillance [IMP]
- nuclear polyadenylation-dependent CUT catabolic process [IMP]
- nuclear polyadenylation-dependent mRNA catabolic process [IC]
- nuclear polyadenylation-dependent rRNA catabolic process [IMP]
- nuclear polyadenylation-dependent tRNA catabolic process [IDA, IGI, IMP]
- nuclear-transcribed mRNA catabolic process, 3'-5' exonucleolytic nonsense-mediated decay [IC]
- nuclear-transcribed mRNA catabolic process, non-stop decay [IC]
- polyadenylation-dependent snoRNA 3'-end processing [IC]
- rRNA catabolic process [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Different nuclease requirements for exosome-mediated degradation of normal and nonstop mRNAs.
Two general pathways of mRNA decay have been characterized in yeast. In one pathway, the mRNA is degraded by the cytoplasmic form of the exosome. The exosome has both 3' to 5' exoribonuclease and endoribonuclease activity, and the available evidence suggests that the exonuclease activity is required for the degradation of mRNAs. We confirm here that this is true for ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
- phenotype: heat sensitivity (APO:0000147)
Additional Notes
- dcp1 shows synthetic growth defects with the rrp44-exonuclease deficient mutant
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
DIS3 DCP1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 2396559 | |
DCP1 DIS3 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 1105115 |
Curated By
- BioGRID