BAIT

PSD1

phosphatidylserine decarboxylase 1, L000001518, YNL169C
Phosphatidylserine decarboxylase of the mitochondrial inner membrane; converts phosphatidylserine to phosphatidylethanolamine; regulates mitochondrial fusion and morphology by affecting lipid mixing in the mitochondrial membrane and by influencing the ratio of long to short forms of Mgm1p; partly exposed to the mitochondrial intermembrane space
Saccharomyces cerevisiae (S288c)
PREY

SAC1

RSD1, phosphatidylinositol-3-phosphatase SAC1, L000001790, YKL212W
Phosphatidylinositol phosphate (PtdInsP) phosphatase; involved in hydrolysis of PtdIns[4]P in the early and medial Golgi; regulated by interaction with Vps74p; ER localized transmembrane protein which cycles through the Golgi; involved in protein trafficking and processing, secretion, and cell wall maintenance; regulates sphingolipid biosynthesis through the modulation of PtdIns(4)P metabolism
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

FMP30 is required for the maintenance of a normal cardiolipin level and mitochondrial morphology in the absence of mitochondrial phosphatidylethanolamine synthesis.

Kuroda T, Tani M, Moriguchi A, Tokunaga S, Higuchi T, Kitada S, Kuge O

Mitochondria of the yeast Saccharomyces cerevisiae contain enzymes Crd1p and Psd1p, which synthesize cardiolipin (CL) and phosphatidylethanolamine, respectively. A previous study indicated that crd1Δ is synthetically lethal with psd1Δ. In this study, to identify novel genes involved in CL metabolism, we searched for genes that genetically interact with Psd1p, and found that deletion of FMP30 encoding a mitochondrial inner membrane ... [more]

Unknown Feb. 09, 2011; 0(0); [Pubmed: 21306442]

Throughput

  • High Throughput

Ontology Terms

  • vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PSD1 SAC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1641BioGRID
409748
SAC1 PSD1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-10.0479BioGRID
587074
PSD1 SAC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-10.0479BioGRID
584407
PSD1 SAC1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
3026160
PSD1 SAC1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
3026194
PSD1 SAC1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
3322420

Curated By

  • BioGRID