BAIT

PSD1

phosphatidylserine decarboxylase 1, L000001518, YNL169C
Phosphatidylserine decarboxylase of the mitochondrial inner membrane; converts phosphatidylserine to phosphatidylethanolamine; regulates mitochondrial fusion and morphology by affecting lipid mixing in the mitochondrial membrane and by influencing the ratio of long to short forms of Mgm1p; partly exposed to the mitochondrial intermembrane space
Saccharomyces cerevisiae (S288c)
PREY

PHB1

prohibitin subunit PHB1, L000001416, L000001415, YGR132C
Subunit of the prohibitin complex (Phb1p-Phb2p); prohibitin is a 1.2 MDa ring-shaped inner mitochondrial membrane chaperone that stabilizes newly synthesized proteins; determinant of replicative life span; involved in mitochondrial segregation; prohibitin deficiency induces a mitochondrial unfolded protein response (mtUPR)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

FMP30 is required for the maintenance of a normal cardiolipin level and mitochondrial morphology in the absence of mitochondrial phosphatidylethanolamine synthesis.

Kuroda T, Tani M, Moriguchi A, Tokunaga S, Higuchi T, Kitada S, Kuge O

Mitochondria of the yeast Saccharomyces cerevisiae contain enzymes Crd1p and Psd1p, which synthesize cardiolipin (CL) and phosphatidylethanolamine, respectively. A previous study indicated that crd1Δ is synthetically lethal with psd1Δ. In this study, to identify novel genes involved in CL metabolism, we searched for genes that genetically interact with Psd1p, and found that deletion of FMP30 encoding a mitochondrial inner membrane ... [more]

Unknown Feb. 09, 2011; 0(0); [Pubmed: 21306442]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PSD1 PHB1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.8103BioGRID
409717
PSD1 PHB1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.7093BioGRID
2170808
PSD1 PHB1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-12.8975BioGRID
582523
PSD1 PHB1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
615097
PSD1 PHB1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158573
PHB1 PSD1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
349736

Curated By

  • BioGRID