BAIT
ROX1
REO1, L000001661, YPR065W
Heme-dependent repressor of hypoxic genes; mediates aerobic transcriptional repression of hypoxia induced genes such as COX5b and CYC7; repressor function regulated through decreased promoter occupancy in response to oxidative stress; contains an HMG domain that is responsible for DNA bending activity; involved in the hyperosmotic stress resistance
GO Process (2)
GO Function (5)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function- DNA binding, bending [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IMP]
- RNA polymerase II transcription factor recruiting transcription factor activity [IMP]
- core promoter proximal region sequence-specific DNA binding [IDA]
- sequence-specific DNA binding [IDA]
- DNA binding, bending [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IMP]
- RNA polymerase II transcription factor recruiting transcription factor activity [IMP]
- core promoter proximal region sequence-specific DNA binding [IDA]
- sequence-specific DNA binding [IDA]
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
HMO1
HSM2, L000003234, YDR174W
Chromatin associated high mobility group (HMG) family member; involved in compacting, bending, bridging and looping DNA; rDNA-binding component that regulates transcription from RNA polymerase I promoters; regulates start site selection of ribosomal protein genes via RNA polymerase II promoters; role in genome maintenance; associates with a 5'-3' DNA helicase and Fpr1p, a prolyl isomerase; relocalizes to the cytosol in response to hypoxia
GO Process (6)
GO Function (3)
GO Component (6)
Gene Ontology Biological Process
- DNA packaging [IDA]
- chromatin organization involved in regulation of transcription [IDA]
- dsDNA loop formation [IDA]
- regulation of ribosomal protein gene transcription from RNA polymerase II promoter [IGI, IMP]
- regulation of transcription from RNA polymerase I promoter [IGI, IMP]
- transcriptional start site selection at RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Epistatic relationships reveal the functional organization of yeast transcription factors.
The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), ... [more]
Mol. Syst. Biol. Oct. 05, 2010; 6(0);420 [Pubmed: 20959818]
Quantitative Score
- -8.070322266 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (epistatic or suppressor interactions) and S score < -2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID