BAIT
MIG1
CAT4, SSN1, TDS22, transcription factor MIG1, L000001110, YGL035C
Transcription factor involved in glucose repression; sequence specific DNA binding protein containing two Cys2His2 zinc finger motifs; regulated by the SNF1 kinase and the GLC7 phosphatase; regulates filamentous growth along with Mig2p in response to glucose depletion; activated in stochastic pulses of nuclear localization, shuttling between cytosol and nucleus depending on external glucose levels and its phosphorylation state
GO Process (4)
GO Function (3)
GO Component (3)
Gene Ontology Biological Process
- negative regulation of transcription from RNA polymerase II promoter [IGI, IMP]
- negative regulation of transcription from RNA polymerase II promoter by glucose [IDA, IGI, IMP]
- positive regulation of filamentous growth of a population of unicellular organisms in response to starvation [IGI]
- positive regulation of transcription from RNA polymerase II promoter [IGI, IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
TBS1
YBR150C
Putative protein of unknown function; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies; TBS1 has a paralog, HAL9, that arose from the whole genome duplication
GO Process (0)
GO Function (1)
GO Component (3)
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Epistatic relationships reveal the functional organization of yeast transcription factors.
The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), ... [more]
Mol. Syst. Biol. Oct. 05, 2010; 6(0);420 [Pubmed: 20959818]
Quantitative Score
- -3.242122611 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (epistatic or suppressor interactions) and S score < -2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID