BAIT
AFT1
RCS1, DNA-binding transcription factor AFT1, L000002660, L000001594, YGL071W
Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress
GO Process (6)
GO Function (3)
GO Component (3)
Gene Ontology Biological Process
- chromosome segregation [IMP]
- establishment of mitotic sister chromatid cohesion [IMP]
- meiotic chromosome segregation [IMP]
- positive regulation of iron ion transport [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription from RNA polymerase II promoter in response to iron ion starvation [IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
MSS11
L000003920, YMR164C
Transcription factor; involved in regulation of invasive growth and starch degradation; controls the activation of FLO11 and STA2 in response to nutritional signals; forms a heterodimer with Flo8p that interacts with the Swi/Snf complex during transcriptional activation of FLO1, FLO11, and STA1
GO Process (4)
GO Function (1)
GO Component (1)
Gene Ontology Biological Process
- positive regulation of flocculation via cell wall protein-carbohydrate interaction by positive regulation of transcription from RNA polymerase II promoter [IGI]
- positive regulation of invasive growth in response to glucose limitation by positive regulation of transcription from RNA polymerase II promoter [IDA, IGI, IMP]
- positive regulation of pseudohyphal growth by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of starch catabolic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Epistatic relationships reveal the functional organization of yeast transcription factors.
The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), ... [more]
Mol. Syst. Biol. Oct. 05, 2010; 6(0);420 [Pubmed: 20959818]
Quantitative Score
- -5.322939228 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (epistatic or suppressor interactions) and S score < -2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID