BAIT
SFL1
L000001869, YOR140W
Transcriptional repressor and activator; involved in repression of flocculation-related genes, and activation of stress responsive genes; negatively regulated by cAMP-dependent protein kinase A subunit Tpk2p; premature stop codon (C1430T, Q477-stop) in SK1 background is linked to the aggressively invasive phenotype of SK1 relative to BY4741 (S288C)
GO Process (4)
GO Function (4)
GO Component (1)
Gene Ontology Biological Process
- gene silencing [IMP]
- negative regulation of invasive growth in response to glucose limitation by negative regulation of transcription from RNA polymerase II promoter [IGI, IMP]
- negative regulation of pseudohyphal growth by negative regulation of transcription from RNA polymerase II promoter [IGI, IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II repressing transcription factor binding [IPI]
- sequence-specific DNA binding [IDA]
- sequence-specific transcription regulatory region DNA binding RNA polymerase II transcription factor recruiting transcription factor activity [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II repressing transcription factor binding [IPI]
- sequence-specific DNA binding [IDA]
- sequence-specific transcription regulatory region DNA binding RNA polymerase II transcription factor recruiting transcription factor activity [IPI]
Saccharomyces cerevisiae (S288c)
PREY
EAF5
YEL018W
Non-essential subunit of the NuA4 acetyltransferase complex; Esa1p-associated factor; relocalizes to the cytosol in response to hypoxia
GO Process (1)
GO Function (0)
GO Component (3)
Gene Ontology Biological Process
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Epistatic relationships reveal the functional organization of yeast transcription factors.
The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), ... [more]
Mol. Syst. Biol. Oct. 05, 2010; 6(0);420 [Pubmed: 20959818]
Quantitative Score
- -2.625835993 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (epistatic or suppressor interactions) and S score < -2.5 for negative interactions (synthetic sick/lethal interactions).
Curated By
- BioGRID