BAIT

SWI6

PSL8, SDS11, transcriptional regulator SWI6, L000002254, YLR182W
Transcription cofactor; forms complexes with Swi4p and Mbp1p to regulate transcription at the G1/S transition; involved in meiotic gene expression; also binds Stb1p to regulate transcription at START; cell wall stress induces phosphorylation by Mpk1p, which regulates Swi6p localization; required for the unfolded protein response, independently of its known transcriptional coactivators
Saccharomyces cerevisiae (S288c)
PREY

RPA14

DNA-directed RNA polymerase I subunit RPA14, A14, L000002883, YDR156W
RNA polymerase I subunit A14
GO Process (3)
GO Function (1)
GO Component (1)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Epistatic relationships reveal the functional organization of yeast transcription factors.

Zheng J, Benschop JJ, Shales M, Kemmeren P, Greenblatt J, Cagney G, Holstege F, Li H, Krogan NJ

The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), ... [more]

Mol. Syst. Biol. Oct. 05, 2010; 6(0);420 [Pubmed: 20959818]

Quantitative Score

  • -3.641716172 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) approach was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.5 for positive interactions (epistatic or suppressor interactions) and S score < -2.5 for negative interactions (synthetic sick/lethal interactions).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPA14 SWI6
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1386BioGRID
367231
RPA14 SWI6
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1353BioGRID
2096447
SWI6 RPA14
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

High-BioGRID
339515

Curated By

  • BioGRID