BAIT

GCN5

AAS104, ADA4, SWI9, histone acetyltransferase GCN5, KAT2, L000000684, YGR252W
Catalytic subunit of ADA and SAGA histone acetyltransferase complexes; modifies N-terminal lysines on histones H2B and H3; acetylates Rsc4p, a subunit of the RSC chromatin-remodeling complex, altering replication stress tolerance; relocalizes to the cytosol in response to hypoxia; mutant displays reduced transcription elongation in the G-less-based run-on (GLRO) assay; greater involvement in repression of RNAPII-dependent transcription than in activation
Saccharomyces cerevisiae (S288c)
PREY

ELP3

HPA1, KTI8, TOT3, Elongator subunit ELP3, KAT9, L000004378, YPL086C
Subunit of Elongator complex; Elongator is required for modification of wobble nucleosides in tRNA; exhibits histone acetyltransferase activity that is directed to histones H3 and H4; disruption confers resistance to K. lactis zymotoxin
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

The yeast Anaphase Promoting Complex interacts with multiple histone modifying enzymes to regulate cell cycle progression.

Turner EL, Malo ME, Pisclevich MG, Dash MD, Davies GF, Arnason TG, Harkness TA

The Anaphase Promoting Complex (APC), a large evolutionarily conserved ubiquitin-ligase complex, regulates cell cycle progression through mitosis and G1. Here, we present data suggesting APC-dependent cell cycle progression relies on a specific set of histone post-translational modifying enzymes. Multiple APC subunit mutants were impaired in total and modified histone H3 protein content. H3K56(Ac) levels were as reduced as total H3, ... [more]

Unknown Aug. 13, 2010; 0(0); [Pubmed: 20709786]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: protein/peptide accumulation (APO:0000149)

Additional Notes

  • Histone H2B and H3 levels are reduced in elp3 gcn5 double mutant cells.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GCN5 ELP3
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
545937
GCN5 ELP3
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
511119
GCN5 ELP3
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
342645
ELP3 GCN5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low/High-BioGRID
284503
GCN5 ELP3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low/High-BioGRID
285039
GCN5 ELP3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
511121
GCN5 ELP3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
239867

Curated By

  • BioGRID